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Constructive algorithm
for path-width of matroids



알고리즘이란 어떠한 문제를 해결하기 위한 여러 동작들의 모임이다.

An algorithm is a specific set of instructions for carrying out a procedure 
or solving a problem, usually with the requirement that the procedure 
terminate at some point.
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Decision algorithm vs Constructive algorithm

Decision algorithm Constructive algorithm

planar embedding on the plane

Is this graph 
planar?

Draw this graph 
on the plane.
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chromatic number ≤ k proper k-coloring

proper 3-coloring



Decision algorithm vs Constructive algorithm

Decision algorithm Constructive algorithm

planar embedding on the plane

chromatic number ≤ k proper k-coloring

dominating number ≤ k dominating set of size ≤ k

For a graph G=(V,E), a dominating set is a subset D of V 
such that every vertex of G is either in D or a neighbor of D.
The dominating number is the minimum size of a dominating set.
A set of red vertices is a dominating set of size 2.
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Decision algorithm Constructive algorithm

planar embedding on the plane

chromatic number ≤ k proper k-coloring

dominating number ≤ k dominating set of size ≤ k

path-width (of matroids) ≤ k path-decomposition of width ≤ k



Decision algorithm vs Constructive algorithm

Decision algorithm Constructive algorithm

path-width (of matroids) ≤ k path-decomposition of width ≤ k

Note that since we only consider `𝐹𝐹-representable matroids’ with a fixed finite field 𝐹𝐹,
we can say that a matroid is a set of vectors in 𝐹𝐹𝑟𝑟.

Definition
A set V of n vectors has path-width at most k if 
there exists a permutation 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 of V satisfying that for all i

dim 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑖𝑖 ∩ 𝑣𝑣𝑖𝑖+1,𝑣𝑣𝑖𝑖+2, … , 𝑣𝑣𝑛𝑛 ≤ 𝑘𝑘.

Note that such permutation is called a path-decomposition of width at most k.



Definition
A set V of n vectors has path-width at most k if 
there exists a permutation 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 of V satisfying that for all i

dim 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑖𝑖 ∩ 𝑣𝑣𝑖𝑖+1,𝑣𝑣𝑖𝑖+2, … , 𝑣𝑣𝑛𝑛 ≤ 𝑘𝑘.

Note that such permutation is called a path-decomposition of width at most k.

Example 
V={(1,0,0), (0,1,1), (1,1,0), (0,0,1)}

1) (1,0,0)  1 (0,1,1)  1 (1,1,0)     (0,0,1)

dim( 1,0,0 , (0,1,1) ∩ 1,1,0 , 0,0,1 ) = 1



Definition
A set V of n vectors has path-width at most k if 
there exists a permutation 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 of V satisfying that for all i

dim 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑖𝑖 ∩ 𝑣𝑣𝑖𝑖+1,𝑣𝑣𝑖𝑖+2, … , 𝑣𝑣𝑛𝑛 ≤ 𝑘𝑘.

Note that such permutation is called a path-decomposition of width at most k.

Example 
V={(1,0,0), (0,1,1), (1,1,0), (0,0,1)}

1) (1,0,0)  1 (0,1,1)  1 (1,1,0)  1 (0,0,1)

2) (1,0,0)  1 (1,1,0)  1 (0,1,1)  1 (0,0,1)

Thus, V has path-width at most 1.



Decision algorithm vs Constructive algorithm

Decision algorithm Constructive algorithm

path-width (of matroids) ≤ k path-decomposition of width ≤ k

Decision version
Input : a set V of n vectors in 𝐹𝐹𝑟𝑟 and a nonnegative integer k
Output : YES if there exists a permutation 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 of V satisfying that for all i

dim 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑖𝑖 ∩ 𝑣𝑣𝑖𝑖+1,𝑣𝑣𝑖𝑖+2, … , 𝑣𝑣𝑛𝑛 ≤ 𝑘𝑘
NO otherwise.

Note that since we only consider `𝐹𝐹-representable matroids’ with a fixed finite field 𝐹𝐹,
we can say that a matroid is a set of vectors in 𝐹𝐹𝑟𝑟.

Note that such permutation is called a path-decomposition of width at most k.



Decision algorithm vs Constructive algorithm

Decision algorithm Constructive algorithm

path-width (of matroids) ≤ k path-decomposition of width ≤ k

Constructive version
Input : a set V of n vectors in 𝐹𝐹𝑟𝑟 and a nonnegative integer k
Output : a permutation 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 of V satisfying that for all i

dim 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑖𝑖 ∩ 𝑣𝑣𝑖𝑖+1,𝑣𝑣𝑖𝑖+2, … , 𝑣𝑣𝑛𝑛 ≤ 𝑘𝑘
if it exists.

Note that such permutation is called a path-decomposition of width at most k.

Note that since we only consider `𝐹𝐹-representable matroids’ with a fixed finite field 𝐹𝐹,
we can say that a matroid is a set of vectors in 𝐹𝐹𝑟𝑟.



Fixed parameter tractable algorithm

Dominating Set 
Input : an n-vertex graph G and a nonnegative integer k

Output : YES if there exists a dominating set of size at most k
NO otherwise.

We can solve this problem by computing all possible sets in time 𝑂𝑂(𝑛𝑛𝑂𝑂 𝑘𝑘 ).



Fixed parameter tractable algorithm

Dominating Set 
Input : an n-vertex graph G
Parameter : a nonnegative integer k
Output : YES if there exists a dominating set of size at most k

NO otherwise.

Want to solve a problem in time 𝑓𝑓 𝑘𝑘 𝑛𝑛𝑐𝑐
where 𝑐𝑐 is a fixed constant.

(polynomial in terms of n)



If we know an embedding of G on the plane,
then G is planar.

If we know a proper k-coloring of G,
then the chromatic number of G is at most k.

If we know a dominating set of size k in G,
then the dominating number of G is at most k.

Decision algorithm ⇐
!

Constructive algorithm



Decision algorithm ⇒
?

Constructive algorithm

Wagner’s theorem(1937)

A graph G is planar if and only if G contains no 𝐾𝐾5, 𝐾𝐾3,3 as a minor.

Problem
Input : a graph G
Question : Is G planar?

We say G contains H as a minor if 
H can be obtained from G 

by 1) deleting vertices,
2) deleting edges, or 
3) contracting edges.

𝐾𝐾5 𝐾𝐾3,3



Wagner’s theorem(1937)

A graph G is planar if and only if G contains no 𝐾𝐾5, 𝐾𝐾3,3 as a minor.

(Decision) Algorithm :

Problem
Input : a graph G
Question : Is G planar?

Decision algorithm ⇒
?

Constructive algorithm

Does G contain 
𝐾𝐾5 as a minor?

𝑂𝑂(𝑛𝑛3)

NO

YES G is not planar.

Does G contain 
𝐾𝐾3,3 as a minor? 𝑂𝑂(𝑛𝑛3)

NO

YES G is not planar.

G is planar.



Wagner’s theorem(1937)

A graph G is planar if and only if G contains no 𝐾𝐾5, 𝐾𝐾3,3 as a minor.

(Decision) Algorithm :

Problem
Input : a graph G
Question : Is G planar?

Decision algorithm ⇒
?

Constructive algorithm

Does G contain 
𝐾𝐾5 as a minor?

𝑂𝑂(𝑛𝑛3)

NO

YES G is not planar.

Does G contain 
𝐾𝐾3,3 as a minor? 𝑂𝑂(𝑛𝑛3)

NO

YES G is not planar.

G is planar.

Even if we know the planarity of G,
we do not know its embedding.



Decision algorithm for path-width of matroids
Problem
Input : an 𝐹𝐹-representable matroid M (a set of vectors)
Parameter : a nonnegative integer k
Question : Is the path-width of M at most k?

Theorem(Geelen, Gerards, and Whittle, 2002)

An 𝐹𝐹-representable matroid M has path-width at most k if and only if
M contains no 𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝑡𝑡 as a minor.

Theorem(Hlineny, 2005)
One can test whether M contains a fixed matroid N as a minor.

A decision algorithm is known.
However, a constructive algorithm is new.



Constructive algorithm for path-width of a set V of n vectors in 𝐹𝐹𝑟𝑟

Input : a set V of n vectors in 𝐹𝐹𝑟𝑟
Parameter : a nonnegative integer k
Output : A path-decomposition 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 of V satisfying that for all i

dim 𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑖𝑖 ∩ 𝑣𝑣𝑖𝑖+1,𝑣𝑣𝑖𝑖+2, … , 𝑣𝑣𝑛𝑛 ≤ 𝑘𝑘
if it exists. 

Constructive algorithm for path-width of a set W of n subspaces of 𝐹𝐹𝑟𝑟

Input : a set W of n subspaces of 𝐹𝐹𝑟𝑟
Parameter : a nonnegative integer k
Output : A path-decomposition 𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑛𝑛 of W satisfying that for all i

dim 𝑊𝑊1 + ⋯+ 𝑊𝑊𝑖𝑖 ∩ 𝑊𝑊𝑖𝑖+1 + ⋯+ 𝑊𝑊𝑛𝑛 ≤ 𝑘𝑘
if it exists. 

Main results



We give the first constructive algorithm for path-width of a set W of n subspaces of 𝐹𝐹𝑟𝑟 .

Input : a set W of n subspaces of 𝐹𝐹𝑟𝑟
Parameter : a nonnegative integer k
Output : A permutation 𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑛𝑛 of W satisfying that for all i

dim 𝑊𝑊1 + ⋯+ 𝑊𝑊𝑖𝑖 ∩ 𝑊𝑊𝑖𝑖+1 + ⋯+ 𝑊𝑊𝑛𝑛 ≤ 𝑘𝑘
if it exists. 

Main results

Theorem(J., Kim, and Oum, 2015+)

Let 𝐹𝐹 be a fixed finite field. Given an input n subspaces of 𝐹𝐹𝑟𝑟 and a parameter k, 
in time 𝑂𝑂(𝑛𝑛3), we can either 
find a path-decomposition 𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑛𝑛 of the subspaces such that

dim 𝑊𝑊1 + ⋯+ 𝑊𝑊𝑖𝑖 ∩ 𝑊𝑊𝑖𝑖+1 + ⋯+ 𝑊𝑊𝑛𝑛 ≤ 𝑘𝑘 for all i, or 
confirm that the path-width is larger than k.



Theorem(J., Kim, and Oum, 2015+)

Let 𝐹𝐹 be a fixed finite field. There is an 𝑂𝑂(𝑛𝑛3)-time algorithm that,
for an input n-element 𝐹𝐹-represented matroid and a parameter k,
decides whether its path-width is at most k 
and if so, outputs a path-decomposition of width at most k.

Theorem(J., Kim, and Oum, 2015+)

There is an 𝑂𝑂(𝑛𝑛3)-time algorithm that, 
for an input n-vertex graph and a parameter k,
decides whether its linear rank-width is at most k 
and if so, outputs a linear rank-decomposition of width at most k.

Main results

Theorem(J., Kim, and Oum, 2015+)

There is an 𝑂𝑂(𝑛𝑛3)-time algorithm that, 
for an input n vectors and a parameter k,
decides whether the trellis-width of a linear code generated by these vectors is at most k 
and if so, outputs a linear layout of width at most k.



Proof ideas
Dynamic programming
Typical sequence
Subspace analysis

김은정(프랑스 국립과학연구센터)            엄상일(카이스트)

Thank you
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